Section 12.7 Polar, Cylindrical, and Spherical Coordinates

Polar Coordinates Review

Cylindrical Coordinates

Examples of Converting Points Examples of Converting Surfaces Examples of Converting Solids

Spherical Coordinates

Coordinate Conversion in a Picture Converting Well-Known Surfaces Conversion Formulas Example of Converting a Point Example of Converting Surfaces

1 Polar Coordinates Review

Joseph Phillip Brennan Jila Niknejad

Polar and Cartesian Coordinates

We usually use **Cartesian coordinates** (x, y) to represent a point in a plane. However, **polar coordinates** (r, θ) are more convenient for dealing with circles, arcs, and spirals.

- **r** represents the distance of a point from the origin.
- θ is the angle in standard position (measured counterclockwise from the positive x-axis).
- It is possible that r is negative. In this case, $(-r, \theta) = (r, \theta + \pi)$.

Polar and Cartesian Coordinates

Example 1: Plot the points given in polar coordinates:

$$P_{1} = \left(1, \frac{\pi}{4}\right)$$

$$P_{2} = \left(-1, \frac{\pi}{4}\right)$$

$$P_{3} = \left(1, \frac{7\pi}{4}\right)$$

$$P_{4} = \left(1, -\frac{\pi}{4}\right)$$

Polar and Cartesian Coordinates: Conversion

Conversion from polar to Cartesian coordinates:

$$x = r \cos(\theta)$$
 $y = r \sin(\theta)$

Conversion from Cartesian to polar coordinates:

$$r^2 = x^2 + y^2$$
 $an(heta) = rac{y}{x}$

2 Cylindrical Coordinates

Joseph Phillip Brennan Jila Niknejad

Cylindrical Coordinates in 3-Space

The **cylindrical coordinates** of a point P in three-space are

$$(\mathbf{r}, \theta, \mathbf{z})$$

where:

- r and θ are the polar coordinates of the projection of P onto the xy-plane;
- z is the same as in Cartesian coordinates.
- In cylindrical coordinates, we usually assume r ≥ 0.

Converting between cylindrical and Cartesian coordinates in 3-space is essentially the same as converting between polar and spherical coordinates in 2-space.

• Conversion from cylindrical coordinates to Cartesian coordinates:

$$x = r \cos(\theta)$$
 $y = r \sin(\theta)$ $z = z$

• Conversion from Cartesian coordinates to cylindrical coordinates:

$$r^2 = x^2 + y^2$$
 $an(heta) = rac{y}{x}$ $z = z$

Example 2: Convert the cylindrical point $(r, \theta, z) = (2, -\pi/4, 1)$ to Cartesian coordinates:

Solution:

 $\overline{x = r\cos(\theta)} = 2\cos\left(-\frac{\pi}{4}\right) = \sqrt{2}$ $y = r\sin(\theta) = 2\sin\left(-\frac{\pi}{4}\right) = -\sqrt{2}$

Cartesian coordinates: $(\sqrt{2}, -\sqrt{2}, 1)$.

Example 3: Convert the Cartesian point $(x, y, z) = (-2, 2\sqrt{3}, 1)$ to cylindrical coordinates:

<u>Solution:</u> $r = \sqrt{x^2 + y^2} = 4$ $\tan(\theta) = \frac{y}{x} = -\sqrt{3}$

Here (x, y) is in quadrant II, so $\theta = \frac{2\pi}{3}$.

Cylindrical coordinates: $(4, \frac{2\pi}{3}, 1)$.

Example 4: Describe the surface given by the equation in cylindrical coordinates $z = \sqrt{r^2 + c^2}$.

Solution: In Cartesian coordinates, the equation becomes

$$z = \sqrt{x^2 + y^2 + c^2}$$
 or $x^2 + y^2 = z^2 - c^2$

This is the upper piece of the hyperboloid of two sheets.

The original equation only describes the top sheet.

The bottom sheet is $z = -\sqrt{r^2 + c^2}$.

Example 5: Describe the solid regions shown below, using inequalities in cylindrical coordinates.

Solution:

(a) $0 \le r \le 2$ $0 \le \theta \le 2\pi$ $0 \le z \le 3$ (b) $0 \le r \le 2$ $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ $0 \le z \le 3$

3 Spherical Coordinates

Joseph Phillip Brennan Jila Niknejad

Spherical Coordinates in 3-Space

The **spherical coordinates** of a point P in three-space are

$$(
ho, heta,\phi)$$

where:

- ρ is the distance from P to the origin O
- θ is the same as in cylindrical coordinates
- ϕ is the angle from the positive z-axis to the vector \overrightarrow{OP}

(so $0 \le \phi \le \pi$)

Spherical Coordinates in 3-Space

- The equation $\rho = R$ defines a sphere of radius R.
- The ball of radius R is given by the inequalities

 $0 \le \rho \le R$, $0 \le \theta \le 2\pi$, $0 \le \phi \le \pi$.

- Points with $\phi = 0$ are on the positive z-axis.
- Points with $\phi = \pi/2$ are on the *xy*-plane (i.e., z = 0).
- Points with $\phi = \pi$ are on the negative *z*-axis.
- For other values of C, the equation $\phi = C$ defines a nappe of a cone.

Conversion To and From Spherical Coordinates

Conversion from spherical to Cartesian:

$$x = \rho \sin(\phi) \cos(\theta)$$
 $y = \rho \sin(\phi) \sin(\theta)$ $z = \rho \cos(\phi)$

Conversion from Cartesian to spherical:

$$\rho = \sqrt{x^2 + y^2 + z^2}$$
 $\tan(\theta) = \frac{y}{x}$
 $\cos(\phi) = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$

Conversion from spherical to cylindrical:

$$r = \rho \sin(\phi)$$
 $\theta = \theta$ $z = \rho \cos(\phi)$

Conversion from cylindrical to spherical:

$$\rho = \sqrt{r^2 + z^2} \qquad \theta = \theta \qquad \cos(\phi) = \frac{z}{\sqrt{r^2 + z^2}}$$

Conversion To and From Spherical Coordinates

Example 6: Convert the spherical point $(\rho, \theta, \phi) = (2, \frac{\pi}{4}, \frac{\pi}{3})$ to Cartesian coordinates.

Solution:

$$x = \rho \sin(\phi) \cos(\theta) = 2\left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{6}}{2}$$
$$y = \rho \sin(\phi) \sin(\theta) = 2\left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{6}}{2}$$
$$z = \rho \cos(\phi) = 2\left(\frac{1}{2}\right) = 1$$

Conversion To and From Spherical Coordinates

Completing Square Review Video

Example 7: Describe the surface given by the equation in spherical coordinates

 $\rho = 4\sin(\phi)\sin(\theta) + 2\sin(\phi)\cos(\theta).$

<u>Solution</u>: Multiply by ρ :

$$\rho^2 = 4\rho \sin(\phi) \sin(\theta) + 2\rho \sin(\phi) \cos(\theta).$$

Then convert to Cartesian coordinates:

$$x^2 + y^2 + z^2 = 4y + 2x$$

Completing the square for x and y, we obtain

$$(x-1)^2 + (y-2)^2 + z^2 = 5$$

which is a sphere.

